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Terminology 

High tide;  the instant at which the water level in the estuary 

attains its maximum height;; 

Low tide;  the instant at which the water level in the estuary 

attains its .minimum height; 

Flood tide; the time interval beginning at low tide and ending 

at high tide; 

Ebb tide;  the time interval beginning at high tide and ending 

at "fows^tide. 
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Introduction.      _ 

The distribution of salt or any other  solute in an 

estuary is governed by the dynamic flow pattern and the extent 

to which portions of water having different  solute concentrations 

nix vith each other.     The  flow and the mixing are  the result of 

She complex interactions of many-factors,-e.g.,   the flow due to 

the river,  the  tidal flow,   the ground seepage, evaporation, wind 

stresses,  gravity flow-, etc.     In many estuaries some of these 

factors are of much greater importance than others.     Itfl^effQlliSWv 

ing inyestigatixm we^restriet ourselve^to estuaries in which the 

tidies and the" river flow are  the predominant agents,--'and we 

neglect all other influences. 

We_furthermore^ confine our attention to estuaries which 

are "essentially vertically homogeneous1*,,    JBy th^s^-weciHean that 

IT: measurements are made of the concentration of the solute by 

taking samples over an entire transverse cross-section of the 

estuary (i.ml,  a vertical iseetion which is perpendie^ilaJKr"toTthe 

^^ecti<MW^ ^4^^^Bt^ tlm^ at any time^&wingrotte; or mgrcrtfdal 

cycles (during which time the conditions of river flow and tidal 

amplitude are assumed to be unchanged),  then the values of the 

concentration so obtained will differ from one another by a 

smaller order of magnitude than will the values obtained by taking 

measurements  at various positions along the length of the estuary, 

but anywhere in a given cross-sect ion and at any timely:/A |yplqi-l 

ease of"ah"es~truary which is not vertically homogeneous iw-Mtm- 

vhlch exhibits two substantially distinct layers of different 

salinities,  the more saline,  and hence denser layer, being; on 
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top*  In such an estuary the differences in salinity between the 

two layers at any given position along the estuary and at any 

time will be greater than the differences between, the salinities 

at points in the same layer but at various stations along the 

estuary*  The division of estuaries into vertically homogeneous 

ainch "stratified" ones is, of course, not a sharp one, and cases 

which do net clearly fall into one or the other category will be 

encountered in practice. 

The long range aim of a theoretical study of estuaries 

is; :to permit-us to predict the distribution of an;,' solute within 

the estuary from a knowledge of the.river flow and the tidesf 

possibly including the introduction into the estuary, or the 

^fa^fval therefrom, of any solute by means of an- external source 

or sink, ouen as- the"discharge of a poliutant by;ah JJidjistrial 

plant.  A complete theory isfould require a study of the detailed 

velocity distribution and of the mixing-processes. At our pres- 

ent stage of^knowledge the development of such a theory is much 

too difficult. We" must content ourselves with'a wore macroscopic 

approach, i.e., one which aims only at predicting some convenient 

average variati on of solute concentration as a function of posi- 

tion along the estuary and- possibly of time,- Such an approach 

has been made by Ketchum [l]* and by Arohs and Stomjriei [2], 

Ketchum subdivides the estuary along its axis into a number of 

volumes,_each of which is as long as the average excursion of the 

tidjs lri--the neighborhood of the volume, and he assumes that com- 

plete mixing takes place within, eaca volume at high tide. 

*  Numbers in square brackets refer to the Bibliography at the 
end of the paper. 
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Ketehum's method  is essentially a refinement of an older method 

which assumes that ail the water  iri the estuary mixes completely 

at high tide,     irons  and  Storrncl  formulated Ketehum's  idea in 

terms of a diffusion equation which they assume  to govern the 

solute distribution.     The equation involves an "eddy diffusivity" 

whose value is assumed  to depend on the amplitude of  the  tidal 

velocity and the tidal excursion. 

The following investigation represents an attempt  to 

derive  (rather than to postulate;  diffusion equations by assuming 

that the 'essence of the mixing process  can;be described in terms 

of very  simple physical-models.     It is hoped  that  this approach 

will give new insight into the problem by showing  clearly what 

tjie assumptions are that lead -to a certain diffusion equation, 

S&d jhow.^ of  the assumptions change 

the equatioriiv  Ife'reover,  such an approach" may provide_some guid- 

ance In the dev^epag&fe.of diffusion equations 'd«rscribiiig other 

physical ^models l&s$$^|i£: various mixing processes may be postu~ 

\bated*     Solnttarohs of th^se  equations may then be "compared'with 

observation or- experiment to ...determine in which estuaries,   if any, 

the  solute distribution is -adequately described by one or "another 

equation,     In this way jwe may hope  to moke the initial  steps in 

formulating laws which describe the  solute diffusion    in various 

estuaries and. in beginning i;o understand  the "f-. met ion of the 

various physical factors involved. 

Excepting thf> final.section of-this report,  it will al- 

ways be assumed "that '.all,4«aatitie-s are-periodic in "time with the 

period off a tio.al cycle,     In particular/ this, mesn- tha -:. "the- '.'time 
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average of the solute distribution over a tidal cycle is the same 

for every tidal cycle. 

For brevity we shall -usually speak o? the salinity, but 

it is to be understood that the investigation applies equally 

yell to any solute. 

We begin our considerations of mixing by examining an 

estuary or channel in which the motion of fluid and the distribu- 

tion of salinity (or the distribution of any pollutant that is 

introduced into the estuary) will be assumed to be governed by 

three factors: 

1) The tides, which are assumed here to cause a periodic 

displacement of part of the water of the estuary relative to the 

rest of the water-and hence permit the possibility of the mixing 

of water from different parts of the estuary.  (Thus, specifically, 

in these considerations iu which we investigate the salinity dis- 

tribution, this tidal motion permits a mixing of the more saline 

water downstream with that which is less saline further upstream.) 

"Qur basic picture "wi It assume1 that the^velocities duetto the 

river are much smaller than those due to the tides so thatr^a 

pronounced upstream flow occurs during flood tide. 

2) A small scale mixing or eddy diffusion, ^iistances moved 

by the fluid because of this mixing mechanism being assumed small 

relative tc the distances which the fluid moves due directly to 

the tides. Vie shall not inquire into the detailed dyna-.iics that 

cause this small scale fixing but will concern ourselves only with 

the effect of the mixing/ 
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3)  The river which produces a net flow of water (and hence 

also of salt) downstream.  The transport of water due to the 

tides and subsequent small scale nixing will he found to produce 

a net flux of salt upstream by mixing the more saline water 

nearer the mouth of the estuary with that which is less saline 

further upstream.  These two net fluxes will he set equal in. 

treating the equilibrium condition in which there is no net flux 

of salt upstream over a tidal cycle. 

The dynamics which are due to the tides and the effect 

of the small scale mixing as well as to the river are hypothe- 

sised.  The salinity distribution then follows from the equations 

of continuity of salt and fluid, since we assume that the net 

~fl^._:pf salt across any section of the estuary is ^ero during a 

tidal period.  In the derivation of tire salinity distribution we 

shall first find the flux that would-be produced by the tides and 

small scale mixing in the absence of a river flow. When next 

taking the river flow into account we assume that the velocities 

which it causes are small in magnitude when compared with the 

velocities caused by the tides during most of the tidal cycle, 

and hence that the basic picture first described in the absence 

of river flow may be preserved when the river flow is included, 

regions; a lower one of cross-sectional area b-,(x,t), salinity 

s-^Xjt) (dimensions ML J)  in which the water moves with velocity 

u^(x,t) and an upper one with cross-sectional area, salinity and 

velocity b-vXjt), S2(x,t), u^Cx/t) respectively; x being the dis- 

tance coordinate along the length of the channel and lU, u2 beinc 

the velocities due to the tides. ....... 
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b2,     s2,    u2 

bl»     sl»     Ul 

-}to ocean 

4x 

Fig.   1 

Actually we need not envisage such a clear-cut division between 

the layers; they may be intersper-ed. We need imagine only that 

the channel contains fluid of two kinds, one with salinity s^, 

moving with velocity u-j_, the other with salinity s2, moving with 

velocity ^^ and finally that the total cross-sectional area of 

fluid of salihity ^ he bx, that of salinity s2 be b2.  For 

convenience, however, we shall speak of the channel as if It 

contained two distinct layers. 

JCinetic Considerations. 

We begin by assuming the channel-to be of constant 

width, but shall generalize later to Include the case in which 

the width varies."""For our consideration we shall need the equa- 

tions of continuity far fluids and for salt and some assumptions 

about:bn; and b^»  Further, we will need to make some assumption 

regarding the transfer of salt between the two layers. We have, 

then, for the continuity of fi"id in the lower layer, 

and for continuity of fluid in the upper layer 

",' •  : 3bn   6(b^u~) 

"W   ~~~— b*  "-. (2) 



Although ve   assume  two distinct layers,  each possessing  its  own 

velocity,  an exchange of salt between the  two layers is permitted, 

so that the equation for the continuity of  salt is for the  total 

channelJ        .                                  , x a(bTST   + b0SoJ       aCh^s-,^   + bosou0; 
—S2 sLL + LLi ±J-^ = o. (3) 

at ax 

Substituting  (l)   and  (2)   in (3) we have 

h [|fi + Ul 451] + bo [£!i + u„ ||g3 = o.       (^) 
1 L3t    i- ox -    & v8t    ^ dx 

It may be noted that in writing (1), (2), (3)» and (h)  we have 

assumed that the fluid in each laver moves with uniform velocity 

over the entire depth of the layer.  If we assume instead that 

the fluid motion takes place over depths bj, b' (i.e., not the 

entire depth of the layers) then (1), (2), (3), and (M-)--become, 

respectively, 

M       3(bj u,) 
—i + —I—l   = o (in 
at ax ^ /•   J 

ab0     a(bp u0) -~ 
at ex u S*.' 

eKb^Sv + b2s2^        5^bl  siui  + b2  S2U2^ 

^.   at ax . <•'-- 

r-b. fill * v.« „   asiN  . /x.   ds2 . .i ..   as. (bi W + bi ui a3T} + (b2 ^ + b2 -2 a5r} = °*      (Lf'} 

 -F   j.wj.a.wwa   *.e   w.i.ix   aaauiucj    ;i'j'wevwi-,    UIlclL   Di    =   D_ ,    Do   =   0ot 

Before considering what laws might be formulated 

regarding the transfer of salt; between the .two. layers we "shall 

consider-a spc ''fie simplified model which will help in the formu- 

lation of these _ava and serve as a guide in the solution of the 

•problem when we have more general models*  We assume, for our 
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first  specific  case,   that 

ux - 0 

b,   = a 
I (5) 

b2 = b +  TJ 

II = t, sin ut 

where a, b, C and ware positive constants.  The equation 

b~ = b + t\  assumes that the tidal wave-length is large compared 

with the length of the estuary so that the level of the estuary 

rises uniformly over its length* 

Thus we have a stationary lower layer of constant 

cross-sectional area and an upper layer the area of which varies 

-sinusoidally with frequency. wy- where 2nAi = %  is the tidal period. 

Assuming thatrirhe-fluid in the upper layer moves uniformly over 

the entire area b2 = b + tj. we may use the continuity equation 

(2) to de termine xu: 

9b2  oCb2u2y  an  6[(b + r})u2] 

at ' "~ax  1 at + •   aT 

a[(b + ^)u2] 
= £u» cos wt -.-+ —, ". ... -,,.., ., _ _,„.„>.,+.. 

3x 

(b + q )u2 = - £xu> cos ut 
Thus 

or 
CXu;  COS U)t ... 

u^ =  (6) 
*    b + C sin ut 

where ws have set the arbitrary function of t which results 

fTQW"this integration equal to zero sc that Up(0,t) = 0 for all t. 

We keep in mind that the region of validity of the expressions 

for r] and Up probably end for some positive value of Xt  Equation 



(6) gives the velocity u2'(x,t) of a particle in terms of its 

position x and the time t.  The position of the particle, l0tt), 

as  function of time may be found by substituting ^2 £
or xand 

<??(t) for u2 in (6) and integrating; 

al2 C^2w cos »t 

or 

^t     b + C sin ut 

d£_    £w cos wt 2 = ... _ dt 

"^2     b + C sin wt 

so that „]_ 
log -t0 = log k (b + C sin wt) c: 

or 

'L2 ' (b + C sin wt) 
V / j 

where the constant of integration k may be determinedly knowing 

the position at one particular time: 

k 
<:Z b + £ sin wtrt 

from which 
_%{tr)tb + C sin wt.) 

£ (t> --^--— *H#2- .-        (7') 
b + C sin wt 

rilefafichs" -'- CaTcUlation o" the' $att rlux« 

Having consiaerea ;tne motion of the upper layer 

caused by the tides directly, we .now. consider the second factor 

which governs the salinity distribution, me small scale mixing 

which produces a transfer-of salt between the two layers. 

We-assume; that mixing takes place instantaneously 

at high and low tide only, and further that the mixing at each of 

these times Is complete,: i.e. , thai the salinities of the upper 

and lover layers- are equal following each of these mixings. V/e 
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shall discuss later the plausibility of this assumption,  5'or the 

present we note that this assumption is in agreement with our 

concept of an essentially vertically homogeneous estuary. 

Our object is to calculate the flux of salt past a 

given cross-section during a tidal period due to the action of 

the tides.  Since our ultimate goal is to derive a differential 

equation for the salinity as a function of position along the 

estuary we shall want to describe the flux in terms of the salini- 

ty.  The differential equation will express the fact that in an 

estuary in which conditions do not change from one tidal cycle 

to the next the upstream flux of salt due to the tides, must be 

exactly balanced by the downstream flux due to the river.  The 

fluxjwill be obtained in the first instance (see Eq. (29)) from 

the mixing considerations described above in terms of the salini- 

ties at a fixed position but at different instants of tims, 

namely those just -jrior to and immediately after the mixing at 

high and low tide.  Using the equations of continuity of salt 

within the ur-per layer these salinities will then be expressed 

in terms of the salinities at a fixed time and at various x (see 

Eqs. t30)» (33)} and (3^)).  From these a differential equation 

for the salinity as a function of x is derived. 

;..,/ In the model we now consider the salinity of the 

upper iayer^ as. measured in a frame of reference moving with the 

velocity of the upper layer, is constant, except when u>t ••= %/2f ~ 

3?t/2, .,, and hence _ . :_ - 

ds0 ds0 

it2*"?*2*0 (3) 

except when  uft = .T/2,   3*/2,  ...   . 
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From (8),  in particular, 

a~ix     fo1  + Ik  .  M   -  s  'x + r       (!ffl  -  Pit   ,   n> /Q{ 
2     5  ~"—pu %     "    2 ^2'   ~—2u -"• > ^ 

R = Q» i 1» i 2>. »»t 

where,   from (71), 

^^-^Trr- (10) 

That is?  the salinity of the upper layer at some 

point x along the-e-stuai-y just before mixing at-high tide is 

equal to the salinity of the upper layer just after the previous 

low tide mixing at the point x + £,-, further downstream, ro  being 

the distance traveled from low to high tide by that section of 

the upper layer vrhich is at x at high tide.  In similar fashion- 

S2(X, M r3^.0) T   u . H m % n*^ ^ 

S .= 0,   + 1,   + 2,   .,, 

where,  from W*§ 
r __   xTb -  O x  -  fe ;=  ... 
* -     T> + £ 

J^ being the distance, traveled from higii^to ^c«? tide by that sec* 

jtion of the upper layer which is at x at low. tide* 

Since the lower layer is assumed to be stationary, 

s (x, ££L2»s. o) = sl(X) .*»»*»" * o>T      (iw 

n = 0,  + 1,  + 2,  .,.  . 

Further,   from the assumption of complete mixing after1 high and 



}ionr-56i02/2 12 

low  tides,  we  have 

s,(x, +0j   =  SoU, -——- + 0) (lb) 

sl(x, ^p&  4 0) - M*, fry-3* - 0) !16) 

n = 0,   +  1,   + 2,   ...   • 

At this point we leave for a moment our rather 

formalized derivation and show how the flux over a tidal period 

may be derived quite simply by properly neglecting terms of rela- 

tive order r/b. We shall not attempt to justify the particular 

approximation.*- that are made therein since a more rigorous deriva- 

tion will be given subsequently. 

Derivation of Diffusion Equation from Elementary Physical Consider- 

ations. 

Let us begin with the conditions just after hlgn 

tide mixing and consider the transport of salt during a tidal 

cycle across the section at x. During ebb tide a volume of water 

of length ^(see Pig, 2) and cross-sectional ares b + C '^ b moves 

downstream past x.  Since no mixing takes place the volume carries 

all its salt content past the section x.  At low tide it instan- 

taneously mixes with the more saline water below thus acquiring 

a certain amo^rtt ^£ ^ltM'~l)vring  flood tide the same volume of 

water (now of cross-sectional area b - C^ fe and length £2J 

is0\fesup^trea» across section x.  At high tide this volume occunies 

"the. .same: positlorjuas it did at the beginning of our cycle, but, 

having acquired an amount of salt at lew tide it has a higher 

sailhity than it had just after high tide mixing.  Moreover, the 
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lower layer upstream of x, having lost some salt during low tide 

mixing with a section of the upper layer which had moved down 

during ebb from a position further upstream, is now less saline 

than at the beginning of our cycle.  Hence, when mixing takes 

place at high tide, the upper layer gives up salt to the lower 

ono.  The cycle is now complete and we see that the net result 

has been an upstream transport or flux of a certain amount of 

salt past the section x. We now describe this process in mathe- 

matical terms. 

Let 

s2(x, ^J  1}* * 0) =SH(X) (17) 

s2(x, lit£_U2^ + o) = SL(x). (18) 

For W2«*     W2u> 

- -V^ cos wt dt = 'SMIL 
! ' 

b 
C «b, L-* I   ^  i    u0dt-v 

from (6),  Thus we may call 
2xC 

I" — 

the approximate amplitude of tidal displacement.  (Note that if we 

neglect terms of higher order.inC/b in (10) and (12), we have 

tf  - S2^ *} Then> usinS U-lh-(l^),   (16), (17), and (18) we 

may write the equation for the continuity of salt at low tide as 

aSH(x) + bSH(x - p = (a 4 b)Sr(x) (20) 

and that at high tide as 

aSL(x) + bSL(x + 0 = (a + b)3~(x) (21) 
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Schematic diagram shoving motion-of water due to tides 
and nixine. 
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in which we have substituted £ for both Z,    and ^ and neglected 

terms of relative order £/b (cf. (20) with (33)).  Now the salt 

transport across a section due to the tides is approximately 

b* SL(x + *)&l<v  b£SL(x + i) up, during flood tide and 

bj SJJ(X - ^)d-t-^ -b^SgCx - !> down, during ebb tide, so that the 

net flux up due to the tides during a tidal cycle across a section 

at x is 

F = bUsL(x + |) *  %(x -|^ . (22) 

Returning to  (20)  and  (21) we may,  for C/b  « 1, write these in 

the form r 
aSTT(x + 4)  + bS„Cx - h  = II (x 

+ ~)  + bSgCx - |)   = (a + b)SL(x + h (20«) 

aS^x .1) > bSL(x ;+|)  * (a + bj^x^l) (21«) 

-respectively..   We may now  substitute  (20')  in f£2) and obtain "an 

equation in STJ aloner 

p=r^tsH(x+|)-Vx-^)r (23) 
^*r2 

plus terms of higher order in £, and hence of higher order in 

C/b.  This result is identical with that given later in (3?) since 
_   • ,„*    2xC 
from (19) £ = —~- and since the constant c in (37) is finally 

set equal to ?:e~o.  The difference in sign occurs because F is 

here the net flux upstream whereas in (37) F is the net flux 

downstream. 

Similarly, substituting (-?!') in (22) we may obtain 
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an equation in SL alone: 

plus terms of higher order in £.  Thus if we call c(x) f 

S„(x)  + ST(x) 
—— 9 —-    the average  salinity during a tidal cycle,  then 

c. 

from (23)   and  (2*f) 

F n 52fc ;\(x). 
a + b 

- abJf   T* 

Since we assume that there is-.- no net increase of 

salt over a tidal cycle, this net flux upstream must eqi ai the 

net flux downstream due  to the river flow,  so that 

~2        a + b    dx 

where R    is the river flow per tidal cycle.     Equation (26)  is the 

integrated form of the diffusion equation 

Rc p *-£ (^b£ di) (2?) c dx      dx ^a + -D ff
J W< 

that is obtained again in (q-1).  Using (19),Eq. (26) may be inte- 

grated, as is done in Eqs. (kl)  to (H-3). 

Calculation of Salt Flux, continued. 

Although this direct derivation of the flux and 

salinity is the most satisfactory as far as seeing the origin of 

the various terrasin (265 is concerned, a more formal derivation 

"in which the terms,that are. to_ be -neglected are clearly exhibited 

was found- preferable when,generalizing the various factors that 
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influence the final salinity.  We turn therefore to the formal 

computation of the flux, F(x), of salt at a fixed section x ever 

a tidal period due to the tides and small scale mixing alone: 

F(x) = i       bpUpS^ d-t (28) 

^•rc/2w HO 

IF hererls the net flux downstream.)  In the integrand (which is 

_a function of x and t) x is held constant -when integrating over 

t.  The choice" of the limits of integration, n/Zw - 0 to 5n/2u  - 0, 

is arbitrary; we could have chosen any interval of length 2%/u^ 

Since we want,to speak of mixing or salt transfer between the 

two layers "at" high or low tide, i.e., when wt = ilSiill or 

ut = Vg^ (n = 0, i 1, + 2, ... ) it is convenient to have these 

points either definitely within or definitely outside of the 

range of integration, hence the "-0" following 02wand |?it/2w in 

the limits.of integration.  Since the integrand Ih/'IS?) is finite 

for all t, we may omit the intervals tt/2u> - 0 <~t < -rc/2u> + 0 

and 3n/2u> - 0'"< t <  3n/2u + 0 and write 

F(-x-)   = j b2u2s2dt + 

vj V2i»)+0 

b2u2s2dt. C23») 

3TC/2W+0 

The reason for  ami'.ting  the  intervals within which mixing  takes 

place will bocome  apparent  shortly.     In (28')  let f(x,t)   s b5u2s2 

so that 3IO
/
2OJ-0 5it/2u>-0 

d3E "j "5« +i ^dt. (28") 

j   r/2uK) J3V2w+0 
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Now 
af (K Do^ljjSg/ 

6x ax 

a s2 

6(b2U2) 

ax 
as2 

^ 4 ax 

= » 
abo 

2-at 
v a     as2 

2 c ax in view of (2) 

= b0 ( 
as 

2   v3t 
2 + „    dS2v t  8(b2s2) 

*2 "§£ at 

However,- in either of  the intervals -?— + 0 <• t  <--^^0. 
^w —     ~2u        ' 

2^ *f   < t  < || - 0 we have _2 * u., -J = o,   so  that 

ax 

3ic/2w-0 
(• 

I 

! 
JTI/2U+0 

a(b2s2) 
at dt - 

ax 

r5rc/2u«0 

3TI/2UH-0 

a(b2s2) 
~~at dt 

=  (b + Os2(x, ^ + 0)  -  (b - OspCx, Is - 0) <29) 
2u) 2u 

+ (b - C)s2(x, ll •+ 0)  - (b + C)s2(x, U - 0) 
2u> 2u 

in view of (5)» 

We  now express  s , at t =|«_ 0,^.-o, and *i oin 

terms of s, at t = _. + 0.  From (11) 

3-: s2(x, |g -  0)   =  s2(x -     q} g + 0). (30) 

5* In order to express  s2 at ^3 + 0 and 2i - o in te ras of s0  at 

~- + 0 we need the  equation of continuity of salt at the  time of 

mixing, which may be written as 

asyix, * o)  + (b * C)s,(x, ,       (U-n + i)7t 

<o-LJ 

aSl(x, i^il • 0)  • (b * OM*, i^lilZ 
cyW 

-  0) 

+  0) 

3D O1 
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at high tide, ani 

-w frw       .;     f^2) 

= asi(x?  0fg--3)« + o) + (b - C)s2(x, 
(*V MS * 0) 

at low tide.  Substituting (11), Cll>), and (16) in (32) we have 

sg**,; g•••* D) * 

a + b - C  [aS2(x> ^ + 0) + (b - Os2(x -  Kv ^ + 0)J33> 

and from (9) and (33) we have 

; ; I . g i^2U * %>> it + 0> * <b " °s2(x> Tu 
+ 0)3(3^) 

where it is to be noted that  the argument of  the  term multiplying 

(b -£ )  in (3*+)  is now the high tide position of that   section of 

the upper layer which is found at x + !;2 at low tide,  i.e.,  x,  and 

not x +^2^^r     Substituting (30),   (33),  and  (3>+)  in (29), we 

have,  finally,   substituting e  = C/b 
'••• ; 

(35) 

where, from (9') and from (10') 

"*;;e) 
-*::^.W,.•. 

l~'* a?') 
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Assuming e « 1 we expand the right hand side of (35*) in a power 

series in e and keep only the terms of lowest order in e, which 

gives ? % _ 
3E - - iL -ab_ A Jx

2 as?Cx> 23 + 0) )       ,.6) 
dx "   b2 a + fc 8x \X     ' ax  )'      {3b) 

The flux of salt at a section at x. over the tidal period 

is,  therefore, _ 
\>2 ,        0   ds0(x,  TC— +  0) 

P =. St _aiL. x2 _JL-L2S ; c. (37) 
y2 a + b ax 

We now compute the flux due to the river flow (the 

third factor which determines the salt distribution) and add this 

flux to the flux produced by the tides (given in (37)5? so that 

fllilM:;J..s no net flux of_ salt over a tidal period, The:-f-lu^^ue 

tGtii^ river is      5^2^0 

G =      Rs*(x,t)dt gpl 

i/-n/2u>.0 

where R is the river flow across any section and has the dimen- 
%  —1 sions of LJT  , and s* is related to s-, and s2 as follows: 

If the river produced a flow in each of the layers pro- 

portional to the cross-section of the layer, then we might define 
as-, + (b + T) )s? 

s* =• —h i ,  if the river acted over a cross-section 
a + b + TI 

M?j*yfct»i:tiwa.|ot*«r- • ht^stfJvaA. ov©r Ja: cross* seotidii i{&%&%•• on. tim 

upper layer, then we would have s* =      A"",'ft     •    However,  over 

i%-3tS^^3r55^elaSr^^^s-"-iie^-i^itlJC^'T&i^i^tK^S'iJSy the  tides and  sman scale 

ml.Ki-ig-and by the river flow  is i so  that  the  salinity^of 

each of the  layers is periodic*.   Thus we may write,   for any time 

fpUi'tX:^"'SnCx, ^ ~ 0), which*'• together -v:1th :RuT~   (.33),   CS-JU- 
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(9') and (12) give, for any time t, 

•  -  . r 
s,(x,t) = s0(x, JL + 0) + 0(i) 1 2u        a,. 

s2(x,t) *  s2(x,^ 4 0) + 0(|) (39) 

As-} + BSo _. y- 

Thus (38) becomes 

G = 2s R [s2(x, ^L.+ 0) + o&) ].        $m 

Derivation of Salinity. 

In adding the flux due to tides and small scale mixing 

tot that-due to the river flow we neglect the terms in 0+0) of 

0{«), Having shown in^^) that the time variation of the salin- 

i^^a^i*W^i^ffe^?a^361^^p&5a«^ again'neglect terms of 

0(*O and replace Sp(x^i+;.orIn (37> a«d (W by six), which 
P.. -£[•      "2w 

iiay^be^in^ x to within terms; of 

relative order | at ahy: time. Adaing F and U in (37) and 0*0) 

and setting" their sum equal tozerowe --then have 

i *<2 

4? ^ x if -^= fc B*> ^} 

the solution of which-is 

u    ,        .2uR         .                    1 
33  lo*  t— + 0)   = - —-g + c* 

b2  a + b 

so  that 

where 
••u> • -1& • at • •"  c'~* ^ 
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k = JL Ajt~b.lL R. {hl«) 
2w  ab r2 

hf§ now set c = 0 so that s(0) =0, which is consistent with the 

fact that u2(0,t) =  for all t so that no salt can get upstream 

of the section at x = 0. 

The constant c ' is determined by knowing the salinity 

at some particular point: 

sCL) =^e -     I 

so that k 

m e w     = s(L)e 

and hence k(-i - -±) 
sCx) = s(L)e L  x . (k-2) 

In particular, if we denote the ocean salinity by d, and define 

"the~len£th L of irhe estrtiarylto be the distance between the point 

at which s(x) = Q and stx7 = <i, then 

i ci - Jo 
^a = e L        x   . « 

It should be noted thatr Arons and Stommel [2] arrive at this same 

result using dimensional analysis and call k/L the flushing number. 

In terms of the notation used here their flushing number equals 

 5—-— where B Is a constant which remains undetermined in the 
2B^ uL 
paper of Arons and Stommel.  It arises in their paper from the 

assumption that the eddy diffusivity A of the salt transfer equa- 

tion H + u || = -— (A ||), which they postulate as a basis for 

their considerations, is given by A = 2B£0U0 where 2£n is the total 

excursion, over a tidal period, of a particle due to the tides, 

U0 is the amplitude of the tidal velocity and u is the river 
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velocity. Equating their flushing number to k/L (see Eq. (k-l,!)), 

we have 
B = 4- (kh) 

which relates B to the parameters of this.paper* 

Calculation of Flux for Generalized Mixing Process* 

Let us now consider the various ways in which we might 

make the present model less restrictive, in order that it have a 

better chance of corresponding with reality, and investigate how 

the salinity distribution is affected by the modifications which 

are introduced* 

We first consider a model in which the dynamics are 

those previously described but instead of assuming mixing to take 

place at high and low tide alone (t = JL and t = 4^» respectively, 
2 w       2 u 

we assume that there is mixing at t = .£-, 2b J2L. 2JL  ,  Moreover. 
2w w' 2ur u » 

we shall not demand that the mixin? be complete at each of these 

times, but rather only that at each mixing a certain quantity of 

fluid from the top layer exchanges places with an equal quantity 

of fluid from the bottom layer.  Let Q(x,t) be the cross-sectional 

area of the section of fluid that is exchanged during mixing at 

time t, and position x along the estuary. For brevity let 

(*+5) 
SI " a S-,(x,t - 0)     S1

+ = S1Cx,t + 0) 

s2~ = s2^x»t " °^    s2+ ~  s?^x»* + °^' 

Then in view of the continuity of salt 

(tu -vJs-," + Qs2~ = b1s1
+ (*+6) 
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which may be written as 

- b's-^'4' -  s ~)  = QCsj" -  s2"") O*©1) 

and 
(b2 - Q)s2~ + (Jsj_- = b2s2

+ 0*7)- 

which may be written as 

- b2(s2
+ -  s2")  * Q(s^" -   s-f). (»f7h 

If the exchange OT~ salt between the two layers occurs continuously 

rather than at discrete points in time, then (*+6r) and C+71) read, 

respectively, 

as1(x,t) as, (x,t) 
-  V"~Tt  + Ul 6x      °   = QCsi«x,t)   -   s2(x,t)] (*f6«) 

3So(x,t) 3s0(x,t) 
• "  b2(~~%t  * u2 ax       >   " Q[s2(x,t)   -   Sl(x,t)] C*7") 

i.e«, in either case, the rate of discharge of salt from any one 

layer into the other is proportional to the difference of the 

salinities of the two layers.  It may be noted that (MS") and 

(^7") satisfy Eq. (k)  for the continuity of salt: 

- ,031    as,    as0   as0 

Reexamining the case in which we had complete mixing, it may be 

noted, substituting (15) in (3D and (16) in (32), that both of 

these equations may be expressed in our present notation by the 

eauation b^ " •+ fe2s2~ ~ ^bl + b2^s2+ from which sp_    ~ ~^Tr F^~ 

so that 

' W - s0  . * b2C-14—^i—} -b2s- 
;.-.%.. (w 

r:+ b7 
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or,  alternately,  since both (31)  and (32) may be written as 

b, Sn" + boS0" = b^s-,"1*•+ boS?
+ (M-9) 

or 
bi(si+ • si^ + b2(s2+ • s-2~^= °» (^9I) 

we may also write C+3) in the forms 

- b1(s1
+ - Sl") »   

x 1 [Sl- - s2-j .       0f8'») 
bI + bi 

Thus for complete mixing Q = -~—1—— , from which we „have both 
it   4. _i. " 
bl  b2 

Q < b., and Q < bp, as might be hoped. 

In postulating a mixing that is less"than complete, we 

shall assume _c + v 
Q = X

3C ^ (5?) 
bi + b2 

where a will be permitted to De a periodic function of t (with 

period2%/u)  independent of x, and 0 <  a £  1*  It is zero at 

times other than n-n/2u> , i.e., when there is no mixing. 

In the case in which we assumed mixing at hign and low 

tides only the flux was given by (28) and (28f).  To obtain the 

'equation for the present model which will be analogous to (281) 

we omit the intervals about the four points nV2w, n = 1,2,3,^. 

Following the work previously done, we arrive at the equation 

which corresponds to (29) and'reads 

§§ = (b i Os2(x, JL + 0) -bs2(x, I  -0) 

+ bs2(x, 2 40) - (b - C)s?(x» ^r -  °> u 23 - ^      (5i) 

+ (b - C)sp(x, |5 + 0> i bs?(x, S5 --0) 

+ bsp(x, - + 0) - (b + C)sp(x, |2 - 0). 
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As before,  we must express the salinities at nit/2ui + 0 

(n = 2,3,*f) and at n7t/2u - 0(n = 2,3,^,5) in terms of the salin- 

ity at -K/2W'+ 0; this time through the use of (7 0. (*f6f), (**7')i 

(M-9) and (50). We now proceed to do this. We have (for the 

reasons mentioned in connection with the derivation of (9) and 

(ID), 
S2(X, g- 0) = s2(x - Alf _!L + 0) (52) 

where, from (7T) 

A- being the distance travelled from high to mid-tide by that 

Section of the upper layer which is at x at mid-tide.  Next, 

from (kj1)  and (50) we have 

-b[s?(x, £ + 0)-s2(x, A - 0)]=T-l2-[sp(x, £"- 0)-Sl(x, 2L - &)]( 

a  b 

^H^Ngfe «« 
Noting that 

s^Cx,:| - 0) = Sl(x, ^ + 0) 

for tfc©- reasons mentioned in connection with (13) and (lV) we 

have, upon substitution of (52) and (55) in (5*+)j 

;s2<x, f *:.B) ;* :fl - ^Is^x - Alf JL + 0)+ J| s^, JL  + 0). (56) 

Further,   similarly to  (52)*  we have 

•^Tt V..   
S2(x»  #£ *  0)   r  s2(x  - A2> *  + 0) (^7) w 

where,  from (71), x/b _ r\ 
x - Ag• = —-j—il . (58) 
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The physical meaning of Ap as well as all further A. (i = 1, 

... ,8) which will be defined below can be determined from Eq, 

(7»). 

Substituting (57)  in (56) we have 

S2(X, | -0) = [1 ~a^-]s2(x-A3, £ +0), £g Sl(x-A2, £ + 0) 

- (59) 
where, from (7') >w  r\ 

x - A    = x ** ~ >/, (60) 3 b + g 

Next,  from W),   (50)  and  (5>ff), 

-  (b -  OCs2(x,JZ + 0)  -  s2(x, ||- 0)] * 

s i ? V" [S*-J ' f5 "0) " si(x» is - 0)3'    (6l) 

Now,   similarly to  (55> we have 

Sl^ IS " 0)  = sl^> 1+ ^ (62) 

and from (MS1)  end (5&J 

a  + b 
- a[s1(x, I + GO -s^x,^ ~ 0)} = .2. t8l(x,-S - 0)  - 

s2(x,^ - OX]     (63) 

v.iich may be written as 

- *       • ^cc ba 
sL(x, I * 0)  =  [1 - ^3Sl(x, *.. 0)  + --2 s2(x, J - 0) 

(63') 

from (55) and (52).  Thus from (63«) and (62) we have 

/  3K ba,-, KQ 
.!<«, K - 0) = ti - ^]Sl(x, JL - 0) + -§ »2(x - 41, |_ . 0) 

(ftlt) 
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and substituting (61f) and (59) in (61) we have 

,,(,, h • o) = [i. _s£ ] ff - Sfj s2<x - *3. s
+ 0) l 

-sJ aa 
i 

ba (65) 

p&'isiJ si(x> iV0) 

-J2L   i L 
+ a+b~t   < bS        ,        .•    •'•* si 

Next, in analogy to (52), we have 

s2Cx, — - 0) = s2(x '+ A, ,. |S + 0) (66) 

Where, from (7*>y 

A Xb ,/oN x...+ V= fc—£* (67) 

Subsl/itutihg ~(%6)jln  (65) we haver-using, C?
rl, 

U) a+b-C; 
aa*   ,       %    " x 

•*+-***- s,(Xj, ~ -+ 0>)     ] 

1   +^i s2(x + V^ + 0) i 
i _-   ^ 

where J   vh2 
x + ^ = 4^ 5 . (69) 

? b2 - c 
Now, from (V7»), (50) and (5**1), 

2u  .,   _  2u - b[s2(x, JL + o) - s2(xf -£ - 0)] = 
(70) 

_!*; {s2(x, S v- o) - a,Cx, &-- o)] 
a + b 
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and analogously to   C 55) j 

U, % -  0)   =  Sl(x, £ + 0). (71) 

Further,  from 0*6*)  and  (50), 

- a  [sr(x, U + 0)  -  S]L(x, IS - 0)] * 
(72) 

a + b-C 

Xrom which 

3ic 
Mx> -ssr. + o) = lx"7  2u> 

.(b-C)a,.       /-    ^      __   ^Qj-Oa., 3K 

^ - TTT^ 
si(x' IS -°>"••* a + b< a + b-C 

2 s2(X, |S - 0).   (73) 

Substituting (59)  and (6*0  in (73) we have 

f oa 
<b-Oa 

st(x, "|S + 0)   =    fl 13 a-*-b-^ -     •< 

^"I^K^ £+i)) 

ba 

L   +^f »2^-A»A + 05 

(b-C)a, 
|h - |^1 s2(x - A3, £ + <>>] 

(7V) 

a+ b-C       ^ a a. 
j    + di  si<* - A>» & + ?3 • 

Tttuff,   substituting (A)  in the right hand  side of  (71)  and the 

result of that  substitution as well as  (68)  in (70), we have 
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n r 
9* aQb. V-—-        ^^ 

[i - 

(75) 

]tu(x*4).9JL -K» } 
«     i7^      I 

ba~       ..    .      »      _.. >{•• 

aa2 
a+b 

aao 
a+b °1 

ba 

L        ba 2,_  ,._ •   it    .  M^A 

(b-C)a. 
Cl - 

iL        a+bJ 1    *  2<*> 

aa» 

ba 

i a+b    ^        1 2ui 

f 

(b~D< 
n   - f!2>  (x.AvJL +0)'!! L a+bJ  2 3'2u j 1 

} 

I 
•a+b-C  :* aa 

—J .;*_(*-**.*  +0) 
a+b    1        2 * 2^ 

Finally,, we have in analogy:';tot-<^2j. 

V 

*c 

whe#e, ••'--£j-ofe (77} 

S2^-S>0)   *s2(x + %>^ + 0) 

x>%- 
-x(b + C) 

WJ 

.Sub^ti tilting 476)  in (75) we have, using (7r) 

n 
IO2 

i- aa      | a a., 
s2(Xl ll.oj-ci-sll'ti.r-^^ 

[1-s!JS2(x>£ + 0) 

> 

+—i s-,(x+iV, -JL + 0) ! 
a+b    1        o'   2u •> 

(781 
^ s. 

iO^ 

V .'    bcu 
11- 2jS,(X+A *     +   0);   | 

a+b"CJ ba 
I t 

i 

+ —I  s„(x+A ,   JL  +  0) j   | 
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I 

| ^  (b-C)a3 p '  J^W* ^ +°> 

aa J,   a+b 2  ' 2u> 
+  |f  ,-• 

a+b  \ w.  aa?T        _   -i 
(b-C)=, p " ^]S2(:-A2> t +0> 

+  —~* J 
a+b-C  5     aa + m s, (X-AR,JL.. +o) 

K L -^       ^ 
where _ x(b + O 

v. 

X + ZL, = — —-        V - A   -  „=^=_=_ . f 7Q ) 
7      b - c "   "8 K2 

We now substitute (52), (56), (59), (65), (68), (75),  and (78) 

in (51) and, making use of (53), (58), (60), (67), (69), (77), 

and (79), expand the resulting expression for dF/dx in a power 

series inC /b, keeping only the terms of lowest order in C/b. 

From this procedure we obtain an expression involving both 

s1(x, it/2u) * 0) and s2(Xj */2« + 0).  In order to simplify this 

expression we shall make the additional assumption that the mixing 

at high tide is complete (i.e., that a, - 1 and s„(x, */2u> + 0) = 

s1(x, n/2ui + 0)),  We then obtain 

dx    .2 a+b 8x L 5x     J       ?  ; 

b 

whore 

M = a2 + ha^  + a^ - 2a2a3 - a^ -  2a a^ + <*2«_3, .     (8l) 

It may further be noted that if we assumed the mixing at low tide 

to be complete (c^ '= i) and that at high tide arbitrary then the 

above equation is changed only In that a must be replaced by a 

throughout.  Comparing (80) with (36) we may note that these equa- 

tions are identical except that the coefficient "h"  in (36) is 
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replaced by M which reduces to M if We let <^ = c^ == 0 and a., = 1, 

as it should,  It may also be noted that the above coefficient 

reduces to unity.if we set au - a^ = 1, au = 0, This is as it 

should be, since in general the flux is proportional to the square 

of the total excursion of the upper- layer during a tidal cycle, 

and, as far as the mixing process is concerned, the upper 

layer has effectively imve^ttf'^a^^^^ly^   a - 0X  only half 

the distance moved in the first model. Following-.the work pre- 

viously done in going from Eqs» (36) to (^2), we may note that 

with this more general model we arrive at Sis. (^2) and (k$)  for 

the salinity, except that the parameter fc in each of these equa*- 

tions must be replaced by 

23[<a + b) h2 

u ab    J2.\. 

fh T82) it should be noted that since 0 ^ at  jl||n.;= 2t3,^ we 

may write 

since each of the five  terms in the   second  expression is non- 

negative.     Noting that we may also Write 

M sliTa2'*^ -  2(1 - a2Hl - a.J  -  2(1 - aJ+)(l - a^-d-a^a^ 

<^,   - (6V) 

since each of the five terms following the 4- in the second expres- 

sion is negative, we have from (83) ~nd (8%) 

Q z a zk 
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vb^re^ from (83)M^^tM^^t^^E^MT^^^^^^^^^ 

afciWSFlliJthsjight hand equality is satisfied only 

if a>> -~ a^ - 0 and a.,-— !•  If a and b can be obtained fre& obser- 

vations then by matching the observed salinity with that predicted 

by this theoretical model, it should be possible tix obtain an 

estimate of lMa:ndhenceV to obtain an Idea of where during the 

^^^^^0sm^^M^^MsM^^^^^^0^^ large valUes of'M 

cprrespbndi:^^ the mixing takes place 

at high and at lew tide. 

Extension of Analysis to Chanael of Varying Cross-Section. 

„ We now consider a different extension of our original 

model.  As first assumed, we again postulate mixing to occur only 

at high and low tides, and that the mixing at each of these times 

is complete. The dynamics are essentially those originally des- 

cribed. However, the cross-sectional area of "the stationary layer 

is now a(x) in place of the constant a, the average area of the 

moving layer—is b(x), and the time varying part of the moving 

layer is C(x) sin wt in place of C sin ut. Following the calcu- 

lations connected with the first model, we see that Eq. (29) is 

changed only in that now b = b(x), C= C(x). Equation (30)*. 
~\   • ^ 

sP(x, —- - 0) s s2(x -r , .£- + 0) must be modified only in that 

C^ is no longer given by (12) since Eq. (6), from which it was 

derived, must be modified as is shown in (83).  With this modifi- 

cation implied, (33) must now read 

3* 
s 
1 

&   2u 

tmmZm?}  ^a(x)s2(x> -£ - OH(Mx) - C(x5)s2(x - rx, JL  * 0)] 

"" "(85)- 
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Equation (3^) must be slightly modified, however, since substitut- 

ing (9) in (85) (rather than in (33)) we have 

s2(x, |l-0)= 

[a(x+£2)s2(x+i;2, |jj +0)+(b(x+C2)- C(xH2))s2(x, jL +0)3 

a Vx+^2)  + b(x+£2)- C(x+C2) 

in which it must be recalled that  S^, is no longer given by (10)„ 

Substituting (30),  (85) and  W)  in (29) we'now have 

dP      a(x)[b(x)  + C(x)l        .       % . ,,, i<ff        ra, 
dx      a(x)+b(x)  -  C(x)     L^    ' 2w 2 W^fe*   vd 

mi 
a(x+c )Cb(x)+C(x)l 

+ - f • -[s?(x, JL +o)-s (x+^r^--.+ 0)}. 

We must now express ^(x) and^(x)  in terms of b(x) and £(x), 

and hence must recalculate E&  (7) giving the position ofa jparti- 

cle as a function of time fdiT the case in which a, b, £ are 

variable* 

Returning to £q.(2) for the continuity of--iuid in the 

upper layer we have 

<J-[(b(x)  + C(x)sin ut)u2] ^ - -r|[b(x) •+ C(x)sin wt] 
oX c 

s - £(x)w cos wt 

which,  upon integrating,  gives 
x 

[b(x)  + Ctx)sin u>t3u2 = - w cos wt I    CCx'Mx* * 

Jo 
*See remark following Eq, (65, 
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or I u> cos  wt J   C(xf )dx' 
u    = t> £ 

2 b{x)  + C(x)  sin wt 

35 

(88) 

Following the procedure used in the derivation of (71) we write 

t w cos ut    C(x*)dx* 
eft JO  
dt b(-f)  + rjl)  sin ut 

which may be written in the  form 
I 

jk [sin wt      C(x')dx'] ="- bit) (89) 

0 

regarding t as a function of t.     Prom (89), recalling that x + £2 

is the low tide position of a particle which is at x at high tide, 

we have 
I X+ir 

i£=x+$0,t=3tt/2w     r 
[sin wt I   C(x')dx* 2 = -   I 

_U^x,t=it/2w j 
"0 x 

b(lHl 

or rs: x+t 

C(x')dx»  +      C(x')dx'  =\      Ml,dl, 

'6 0 x 

Similarly, we have 

(90) 

or 

[sin wt  C(x')dxf 

*-*i 

0 

r 
J 

C(x»)dx» + 

- ^x,t=37t/2u 

- &=x-£L,t=w'2w 

X 
p 

C(x')dx' = j  b(4.)d<t. 

b(V;dl 

*-h 
(91) 

In order to expand dF/dx as given in (3?) in a power 

series as was done in the case in which £ and b were constants, 

it will be convenient to write 
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C(x) = r3x(x) 
(92) 

b(x) = b(i(x) 

where C and b are constants, having the dimensions and ordor of 

magnitude of C(x) and b(x), respectively.  X(x) and n(x) are 

thus non-dimensional and of order one. With these substitutions 

(90) and (91) become 

C 
b" 

rH2 
Jx 

^(-t)d-t 

«i X4*F 

"~ 2 X(x,)dx' + i  X< jcMdx' 
j 

(90^ 

0 

x^l 
^(Dal 

.. T X—^,. 
1 X(x«)dx« +  XU'Mx' 

I 0 JO 

(91r) 

In (90') and (91') we nov; consider 

CCx) 
b(x) e = /mil 

as a function of £p  and  £    respectively,  from which we finally 

obtain power  series      in e for  £? and £ •     Thus from (90J) 

e(0)   = 0 

d£(0) '_        |^(x) 

dd 

2   (     X(x!)dx» 
JO 

rX 
li'Cx) j     ^x')dx«  - u(x) X(x) 

vO 
JX 2 

2[   \     X(x')dx*1 
JO 

(93) 

from which, considering ?;„ as a function of e, we have 
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t2») = 0 

d^(C) 
fX 

2   ;.     X(x')dx' 
_      ^0 

de ji(x) 

d%(0) »*  1    MxOdx' 
-:.   Jo 

,   2 
as ^3(x) 

37 

[|i><x)    J    X(x')dx» 

°0 

ji(x)Mx)l . 

Similarly,  from (91');we have 

e(0) .= 0 

ddPJ. 
d^x 

d2e(0) 

li(x) 

2 J" " X(x')dx» 

-ii'(x) f? 
J 0 

X(x')dx«  +    (i(x)X(x) 

dC 
2[ 

x 2 
X(x')dx»] 

0 

(9?) 

from which,  considering   L  as a function of  e, we have 

^(0) 

d$ (0) 

d e 

d2MO 

= 0 

rX 
2  |     X(x*)dx« 

JO 

de' 2 

*i(x) 

^  \     X(x!)dx' 
0  

ji3(x) 

(96) 

[ ii1 (x)  J   X(x»)dx» - n(x)XCx)] . 

Using (92) we may write (87) in the form 
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_ a(x)[|i'(x) -eUxll 

b 

sip      a(x)[y(x) -e\(xj] K r        it       rxvl 
4£. =  L [s,(x-, -• + o)  -  sAx - r>1? Js. + 0)1 
dx      af-jr^        ,   v       , ,   v 2     '   2u> d I7   2u 

(87') 
a(x+^^))[ti(x)  +eX(x)l 

. _^_ + ^(x+^2)-eX:x+^2) 

[s_2(x, £ . o).s2(x + ^ £ > 0)1 

Osirig (87f), (9*0 and (96), we now expand dF/dx in a power series 

in e, keeping only the terms of lowest order in e and obtain 

fx       - 2 
r , v ./ v f £(x')dx\ a<; (x JL + 0) 

dF =  k ±    I a(x)'b(x) ! \I0      -•) 8o2;x?,.'25 + u;-   fq7. 
dx " "  9x £.atx7+b(x) \ b(x)  /       9*;    J 

K?fJ 

in which we have substituted (92) and (921) in order to return 

to the variables C(x) and b(x).  Comparing: (97) with (36-) and 

following tne methods used to arrive at(H2)  and (V'V)* we see 

that the salinity,formerly given by (*f2) is now expressed by the 

following similar equation: 
rX 
V   k(x')dx' 

s(x)-= s(L)e m) 

where 

kli) = is *<x> k$&s [. ..><*>.-,-j 
2w a(x)   » b{x) 

i2 
(98 V) 

il    C(x»)dx' J 
i'io J 

which is identical with (^2) if a(x), b(x) and £(x) are .constant, 

Extension of - Analysis to"'-More General Kinetic "Conditions. 

Finally, we consider a model which is identical to the 

first isodel (a, b, £ constant, complete fixing at high and low 

tide and no mixing-at other times) excect that the bottom layer 

is assumed to have a periodic velocity •"-••••• 
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12, (t) = - U COS ( U)t + sp), 

39 

(99) 

For this case the flux formerly given by (28) is now 

5,n/2u>-0 
f 

F(x)  =     i (b9u2s2 + b1u-Ls1)dt 

Ju/2u-0 

W?<>-0 ?7t/2u>-0 
f — 

f(x,t)dt +    j f(x,t)dt 
J 

v. H/2UH-0 3TI/2UH-0 

(100) 

where 
f(x,t): = ti2u2s2 + ^lulsl»       b2 = "b * ^ sin i*jt,     b^ - = a 

and u2 is given by (6), and u_ By (99)« 

Following the work done previously we now have, in 

place of (29), 

(101) 
M =  (b + Os?(x, JL .+ 0) + a s,(x, JL  + 0} 
cbc.        •=   2u>        1 ' 2u 

-- (b + Os0(x, ~ - O) - a s,(x, IS - 0) 

since from the continuity Eq» (32), 

(bisi + b2so)j      = (b-,sn + b~sPI 
^ l3n/2y-0    X ^   fTl3ii/2h»+0 

Since we have assumed mixing complete af'ter high and low tides, 

(15) and (16) may still be used.  The continuity equations (31) 

and (32) may also be applied to this model and since u2 is still 

given by (6), Eqs. (9), (10), (11), and (12) may also be used. 

Ho;/ever, (13) and (1*+) must now be changed to (see Eqs. (9) and 

(ID) 
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s  (x    (lfn + lh - 0)   = si^x'       213 ; 
/„ (**n - Du .,  <->> 

2w 

(U-n + l)ir. 
Sl(x, ——  - OJ   - SjUc - Yl,        g2  

n - 0»   + 1,   +2.,  ••« 

'+0 

(102) 

( iO^) 

where 

Y2 » - 

(>fn+lW2w 

u (t)dt = 2U CQS 2 
1 u 

(102') 

*I = 

J(%-1)IC/2M 

'(*+n+3)Tt/2u 
,^,,       2U-cos $ 

U-i(t)dt    =    -*;   • 
i I.J 

J  (^+1)71/20) 
U) 

(1031) 

Since with b-,   = a,  a constant, we have yp = YT»
we denote their 

common value by. 2IT cos o ix 2U cos .© r 

the distance traveled by the lower layer between high and low 

tide. 

We now express the various terms in (101) in terms of 

s,(x, - 
dUi 

From (1?) s,(x, JL + 0) = So(x, JL  + 0) and 1 2w d 2u 

from (16) s,(x, 4r + 0) = s?(x, 4^ + 0)" and 
1    fit*)       . .£ " •    2w 

from (11)  s2(x, 12- 0) - s.(x - r , _H + 0) 
«=   2w        2     1  2u 

where x - 5, is given in (12). 

From (103), (15) and (10*+) we have 

'to 

It 

2u s,(x, i* - 0) = s2(x - r, *- 0), (105) 

From (16)  s,(x, |£ + c) = s„(x," .^ - . 
c  ' 2u» dU) 
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and substituting (11), (1C5) and (16) in (32) we have 

s2(x> |S + 0)   = ^  [a  s2(X-Y, ^ ^O^-Os^x^, JSj-40)]. 

Mr,A> 
From (9)  and (106; 

s2(x' 1 -0) = irk [a s2(x+^i^ + o)+(b-c)S^x, ^ +,o)] 
(107) 

where b± = ^2 - Y (108) 

following the method used for evaluating Yt 

Finally,  from (102),  U6)  and  (106) 

s-,(x, SL-'OJ  = —i-p  [a s?(x, JL + 0) + (b-Os?(x-6p, JL + 0) ] 2u a+b-C « 2W 2 2'   2w 
(1091 

where,  from (7*) (r + vHb -  tO 
x -  b    =_U Vi * * (110) 

Substituting  (11),   (15),   (16),   (105),   (106),   (107),   and  (109) 

in (101) we have 

(Ill) 

a-* b^T" L  2'   '   213 " u/   * s2^* " u2> 7^ 

If we assume y to be of order C/b and  that  e = C/b  « 1 we may- 

write 

|| = J^glZl   [S,(x, -2 4 0)   ~  s2(x *  6,,JL + 0) 3 
dx      a+b(l-eJ 2u ? *'   2u '111') 

ab(l-c)   r_   #•        T^\ / i       t       ~\ i 
+ a+bfl-£y ; ''ac:(jr' 1& + 0) -  s2Cx -  62» 20 *0) J 

where  from (10),   (12),   (108),  and  (110) 

1       1   -e       T ' 
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Using (1111), (112), (113), and (1CV) we expand the right hand 

side of (ill') in a power series in eand keep only the terras 

of lowest order in e = C/b*  The result is 

^ ^     ^So(x, -21- + 0) 
£ = .aba t.(a-y»a^ ' a" i.j-    (IBS 
dx    a+b dx \ b gx 

This result is just what one might have expected since, to first 

order in e, the distance traveled by the unper layer in Toing 
2x£ from low to high tide is, as was previously shown, £ = ——-? , 

whereas the distance now traveled by the lower layer in this 

same time interval is Y = —•—" ? and hence the term which 

corresponds to the diffusion coefficient is again proportional 

to the square of the relative displacements of the top and bottom 

layers.  Following the work previously done, we could also solve 

(11*+) and obtain the salinity.  The result is 

s(x) = s£L)e ^xo - ?-Xo MI5) 

where r>„  „ 
^os 
_-— • = v , 

Diffusion Equation in the " Non-steady Case and in the Presence 

of a Solute Source Distribution* f 

Let us return to equation (*+l).  The left hand side 

expresses the flux of salt upstream past the cross-section at x 

during a tidal cycle as a con sequence....-of ••.."the "tides.  The right 

hand side expresses the flux downstream past the sane section 

and during the same interval due to the river.  Equation (Vl) 

expresses the "act that these two contributions to the flux must 
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cancel in. an estuary in which conditions do not change from cycle 

to cycle and in which no salt (or other solute) is introduced 

into, or removed from, the estuary by external agents. 

We new allow for variation of the solute concsntration 

from cycle to cycle and also for introduction of solute into 

the estuary. 

s(x,t) ; • s(x+Ax,t) 
«-—" 

i x+Ax 
Consider an element of estuary of length Ax and of mean 

cross-sectional area during a tidal cycle a+b.  The flux out of 

the element at x during the time At due to the tides is: 

— S&- ••^•' x2 M 
b2 a+b 2x"    ax At " |iAt* 

The flux into the element at x + Ax during time At 

due to the tides is (neglecting terms which will vanish in the 

limit Ax, At—>0) 

u 
!> &  + 4z  U    ||)Ax]At - ~ At. ^  at —5 ~T TT- LX  JAB + ~ tx ? afb 2 it    ax  ax    ax D 

The net flux into the element due to the tides during 

C(J 

"St 

At  is 
'*f£""«V       u     *      ,    2 
?tS Tn * <*   fiS** 

•fe D -£-   (x2  •^§)^ X At. -     ax  -     ax^"*nx* 

(116) 

Let us aiiettes that the derivation of expression '<"ll6') remains 

valid if we permit changes in solute concentration from cycle 

to  cycle  as well as  solute  introduction by external agents 
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(provided our fundamental mixing mode?, is net altered).  The time 

deuendence of the salinity will most likely be due to variation 

in the river discharge.  The external agent may be the discharge 

of pollution by an industry.  The mixing model nay then be ex- 

pected to be essentially unchanged provided the time during which 

the river discharge varies significantly is large compared to a 

tidal cycle and provided the amount of solute which is introduced 

during a tidal cycle is so small that it does not materially 

affect the concentration during this cycle. 

The flux into the element in time At at x due to the 

river is 
R(t)sAt. 

The flux out of the element at x +jlx due "CD the river; 

is L ":-:-v:V- 'yr'^ 
R(S + |s Ax)At. dx 

The net flux out ,of the element due to the river is 

R(t-)|f AxAt.- (117.) 

If    q(x,t)/denotes the  introduction of  solute^into  the 

estuary- per unit length of ostuary and per unit time   (aijmensT-ons 

ML* T~  )   then the total increase of  solute  in the element during 

At is Q       2 
D dx"  U    H)AxAt " R H Lrtt + ^(x,t)AxAt. (118) 

This must  be   equal  to 

[s(t + At)  -  s(t) ] (a + b)Ax 

= JS   (a +  b)AxAt. (119. 
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Hence we obtain the fo Hewing differential equation for the 

concentration of  solute 

U+b) |f * R( t) |f  = D ±  (x2 p)  + q{x,t}. (119) 
ot 5x fix fix 

Conclusion* 

In this reporrt we have derived an equation governing 

the distribution of a solute in an estuary in which the river 

flow and the tides are the predominant factors and in which the 

dynamic and mixing conditions can be described by a very simple 

physical model.  This model was subsequently generalized in 

various ways and it was found that the basic form of the diffu- 

sion equation was unchaagecU  It should be noted that the various 

general!rations which were discussed independently can all be 

combined into one modal.  In the last section an equation was 

derivedwhich allows for time dependence of the various quanti- 

ties involved and for Introduction of solute Into the estuary by 

an external agent* 

la order -to ascertain if the theory- is capacie or des- 

cribing the conditions in a real estuary it will bo necessary to 

compare the predictions of this theory with the observational 

data from a number of estuaries whose over-all structure permits 

application of this theory. In particular this will imply that 

the ostuarios are essentially vertically homogeneous, that their 

properties arc determined mainly by the river and tides and that 

it is feasible to divide the cross-section at any position along 

the ostuary into two regions such that the tidal velocity is 
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essentially uniform within each region but different for the two 

regions. 

However, even if it is found that this theory is net 

directly applicable- to real estuaries it ssay nevertheless be a 

helpful guide in experimental studies.  Moreover, it is especi- 

ally to be hoped that it will be a useful bfcsis for the formula- 

tion of wore elaborate theories that will describe real estuaries* 

A few interesting solutions of the diffusion equation 

derived in the last section will be given in a future report. 
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